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Abstract

For species of conservation concern, an essential part of the recovery planning

process is identifying discrete population units and their location with respect to

one another. A common feature among geographically proximate populations is

that the number of organisms tends to covary through time as a consequence of

similar responses to exogenous influences. In turn, high covariation among pop-

ulations can threaten the persistence of the larger metapopulation. Historically,

explorations of the covariance in population size of species with many (>10)
time series have been computationally difficult. Here, we illustrate how dynamic

factor analysis (DFA) can be used to characterize diversity among time series of

population abundances and the degree to which all populations can be repre-

sented by a few common signals. Our application focuses on anadromous

Chinook salmon (Oncorhynchus tshawytscha), a species listed under the US

Endangered Species Act, that is impacted by a variety of natural and anthro-

pogenic factors. Specifically, we fit DFA models to 24 time series of population

abundance and used model selection to identify the minimum number of latent

variables that explained the most temporal variation after accounting for the

effects of environmental covariates. We found support for grouping the time

series according to 5 common latent variables. The top model included two

covariates: the Pacific Decadal Oscillation in spring and summer. The assign-

ment of populations to the latent variables matched the currently established

population structure at a broad spatial scale. At a finer scale, there was more

population grouping complexity. Some relatively distant populations were

grouped together, and some relatively close populations – considered to be more

aligned with each other – were more associated with populations further away.

These coarse- and fine-grained examinations of spatial structure are important

because they reveal different structural patterns not evident in other analyses.

“Given a species that is broken up into a number of such

isolated groups or populations, it is obvious that the con-

servation of the species as a whole resolves into the conser-

vation of every one of the component groups.”

(Rich 1939)

Introduction

Efforts to conserve at-risk species can be hampered by a

lack of understanding of the spatial structure of population

units and the collective contributions of the populations to

long-term persistence and recovery (Hanski 1998; Rieman

and Dunham 2000; Bowen and Karl 2007; Fullerton et al.

2011; Feldheim et al. 2014). The abundances of geographi-

cally proximate populations tend to fluctuate in concert

with each other through time as a consequence of large-

scale exogenous influences (i.e., the “Moran effect”; Gren-

fell et al. 1998; Liebhold et al. 2004). However, diversity

across populations and their habitats can result in a degree

of asynchrony among populations. For example, check-
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erspot butterfly ecotypes that occupy diverse environments

(coastal, low elevation, and interior high elevation) in Cali-

fornia depend on different host plants that confer different

levels of drought tolerance (Erlich et al. 1980). Individual

populations of sockeye salmon in Alaska display a diversity

of life history adaptations to variation in spawning and

rearing habitats, which has sustained the metapopulation

despite major changes in climatic conditions over the past

century (Hilborn et al. 2003). In a cricket metapopulation,

subpopulations that occupied small heterogeneous habitat

patches weathered environmental stresses more successfully

than those in large homogeneous habitat patches (Kindvall

1996).

Because of the importance of this spatial diversity in

population response, there has been growing interest

among researchers in portfolio theory (e.g., Schindler et al.

2010), a concept from finance applied to natural resource

management (Figge 2004), where diversity in populations

can lead to greater stability in a species. An important next

step is to understand the mechanisms that maintain the

population diversity (Ives and Carpenter 2007). In particu-

lar, can we identify the degree to which populations

respond to common forcing functions and the degree to

which they act independently? This type of information

will be critical to manage populations across their spatial

extent to maintain the persistence of at-risk species.

Most efforts to understand population diversity have

focused on population connectedness – examples include

the analysis of DNA collected from individuals across the

landscape (e.g., Guillot et al. 2005) or tagging data to

quantify dispersal between populations (e.g., Block et al.

2005). More recently, researchers have focused on inter-

population diversity using multivariate time series analysis

to quantify commonalities in observed indices of abun-

dance (e.g., Ward et al. 2010; Ohlberger et al. In Press).

This approach allows for a detailed examination of how

populations covary through time and identification of

common forcing functions that can be related to large-

scale environmental indicators. Here, we expand upon this

approach and demonstrate an application to threatened

Chinook salmon (Oncorhynchus tshawytscha, Walbaum

1792) to characterize population diversity. Pacific salmon

are an interesting metapopulation example because of the

high fidelity of spawners that return to their natal river

tributary. This behavior promotes isolation and local

adaptation of populations, and there is some level of spaw-

ner exchange via straying between populations, which

maintains a connection among them (Policansky and

Magnuson 1998; Rieman and Dunham 2000).

For anadromous Pacific salmonid species listed as

threatened or endangered under the U.S. Endangered

Species Act (ESA), understanding diversity – identifying

population units, their spatial structure, and connected-

ness – has been an essential part of the recovery planning

process (McElhany et al. 2000). They have been exten-

sively studied, and several kinds of data have been used to

describe population connectivity. The ESA listings cover

broad domains, called evolutionarily significant units

(ESUs; Waples 1991), each of which are composed of pop-

ulations spread across relatively large geographic regions.

The population structure is hierarchical, where at the

broadest scale populations within an ESU are considered

to be more similar to each other compared to populations

outside of their ESU. Below the ESU level, several popula-

tions may be allied into distinct major population groups

(MPGs; McElhany et al. 2000) within an ESU. Populations

within such groupings may more frequently exchange

individuals with each other than with populations in other

MPGs or within the broader ESU. Below the population

level, subpopulation structure may also exist (e.g., Quinn

et al. 2006, 2012). Population persistence is, in part, a

function of the degree of association and connectivity at

these different levels (McElhany et al. 2000), and thus,

assessing extinction risk requires a delineation of popula-

tion structure and the status of constituent populations.

The salmon population delineation process has

included the evaluation of molecular markers, ecological

context (ecological community and landscape features

where fishes spawn and rear), biogeography (river network

structure, connectedness, and distance between tribu-

taries), and phenotypic traits such as dates of migration

or reproduction, and age and size at spawning (Waples

et al. 2001; Ruckelshaus et al. 2002; ICTRT 2003). Com-

parisons of demographic data for assessing common and

divergent characteristics have been limited, however, and

therefore, the covariance of population size has played a

lesser role in assessing population structure and diversity.

Newly available demographic data and more accessible

analytical techniques allow us the opportunity for assess-

ing the spatial patterns of population diversity within and

across ESUs. Specifically, we describe the spatial patterns

of diversity among populations of spring- and summer-

run Chinook salmon in the interior Columbia River Basin,

and we take advantage of this well-studied system by com-

paring these spatial patterns to population structure deter-

mined through previous means (ICTRT 2003).

To do so, we rely on a time series technique called

dynamic factor analysis (DFA; Zuur et al. 2003) rather

than more common correlation analyses (e.g., Buonac-

corsi et al. 2001; Liebhold et al. 2004). Interpretation of

correlation analysis can be complicated by spatial and

temporal autocorrelation that can lead to potentially false

conclusions about the significance of correlations. DFA

can explicitly account for the effects of exogenous drivers
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and covariance in the data when identifying common

latent variables among the multiple time series.

Materials and Methods

Data

The time series data we used in our analysis consisted of

estimates of wild spawner abundance of spring- and sum-

mer-run Chinook salmon populations from the interior

Columbia River Basin (Fig. 1; Table S1). Chinook salmon

are semelparous and spawn in freshwater streams. Off-

spring of Chinook salmon populations considered in this

study have a juvenile life history characterized by rearing

in freshwater until their second spring. Then, they

migrate to the ocean and remain for 1–4 years before

completing the return migration to their natal streams.

Adult spawners consist mostly of 4-year-olds that spent

2 years in freshwater and 2 years at sea. Spawner esti-

mates were derived from returning adult counts at weirs,

redd (spawning nest) counts, and other sources of data

(see Ford 2011; Salmon Population Summary (SPS Data-

base 2015); Table S1). Data prior to 1957 were excluded

because earlier years’ estimates of abundance were avail-

able for only a few populations. Similarly, we discarded

several populations from the analysis (Chamberlain Creek,

and Pahsimeroi and Tucannon rivers) because only rela-

tively recent years (since mid-1980s) of spawner abun-

dance estimates were available. There were 24 time series

remaining, representing 2 ESUs. Abundance estimates of

wild spawners (the yearly number of spawners includes

wild and hatchery fish (if present), so this number was

multiplied by the fraction of wild-origin spawners) ranged

from <10 individuals in some years to >4000 in other

years for a few populations. Because the data were skewed

(approximately log-normally distributed), they were log-

transformed, and then, each time series was standardized

to have zero mean and unit variance (this latter transfor-

mation was necessary because of assumptions about

variances described below).

Dynamic factor analysis

We used DFA to evaluate the data support for a range of

possible underlying structures of population diversity.

At the extremes, these structures range from one

synchronous metapopulation to many independent sub-

populations. This approach is analogous to traditional

factor analysis and recently has become more accessible to

ecologists (Zuur et al. 2003). The DFA approach is more

Figure 1. The Columbia River Basin, with

populations included in this study (see

Table S1). 1. Catherine Creek; 2. Upper

Grande Ronde River; 3. Imnaha River; 4.

Lostine River; 5. Minam River; 6. Wenaha

River; 7. East Fork South Fork Salmon River;

8. Secesh River; 9. South Fork Salmon River;

10. Bear Valley Creek; 11. Big Creek; 12.

Camas Creek; 13. Loon Creek; 14. Marsh

Creek; 15. Sulphur Creek; 16. Lower Salmon

River; 17. Upper Salmon River; 18. East Fork

Salmon River; 19. Lemhi River; 20. Valley

Creek; 21. Yankee Fork River; 22. Entiat River;

23. Methow River; 24. Wenatchee River.
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flexible than assigning each observed time series to an

underlying process (e.g., Ward et al. 2010), particularly

when the number of time series is relatively large, such as

the data set included in our analysis (n = 24).

The statistical model underlying DFA treats the

observed data as linear combinations of one or more

latent unobservable “trends” or variables, each of which is

modeled as a random walk (Zuur et al. 2003). Latent

variables that explain a large portion of the temporal vari-

ation in a particular time series receive large weight (posi-

tive or negative), while latent variables that explain

minimal variation will receive a weight closer to zero. The

treatment of unobservable latent variables makes DFA a

conventional state-space model (Clark and Bjørnstad

2004).

The salmon abundance data are well-suited for use in

DFA, as mentioned above: Adults return to freshwater

from the ocean and are philopatric which segregates

organisms into discrete units and selects for local adapta-

tion and thus independence between populations; how-

ever, there is some exchange or straying of individuals

between populations and as a consequence creates the

potential for hierarchical connectedness between popula-

tions (McElhany et al. 2000).

We used the MARSS package for the R programming

language, which fits linear multivariate autoregressive

state-space models with Gaussian errors (Holmes et al.

2013). Our parameterization of the DFA model included

explanatory variables drawn from a set of environmental

covariates. The model took this form:

yt ¼ Zxt þDdt þ vt (1a)

xt ¼ xt�1 þ wt (1b)

The vectors of the natural logarithms of n Chinook sal-

mon spawner counts at time t (yt) were modeled as linear

combinations of hidden latent variables, or trends, at time

t (or states, xt) times factor loadings (Z), plus the effects

of any exogenous covariate influence at time t (Ddt), plus

some random observation errors vt, which were dis-

tributed as a multivariate normal with mean vector 0 and

variance–covariance matrix R. The m latent variables at

time t (xt) follow random walks governed by process

errors wt, which were distributed as a multivariate normal

with mean vector 0 and variance–covariance matrix I,

which was set to an m 9 m identity matrix to ensure

identifiability (Zuur et al. 2003; Holmes et al. 2012,

2013).

Starting with the hypothesis that all populations

(n = 24 time series) exist as a single metapopulation (i.e.,

represent the observations of the same process), we fit

models having from m = 1 to many latent variables. We

conducted estimation in a maximum-likelihood frame-

work (Holmes et al. 2013; R Core Team 2015). The data

support for each model was quantified using the small-

sample Akaike information criterion (AICc; Burnham and

Anderson 2002). After ensuring that parameter estimation

converged, we examined model fits to data and examined

potential problems with residuals.

We explored several structures for the R matrix,

including allowing the populations to be independent

(i.e., where only diagonal elements of R were estimated).

Ultimately, comparisons of AICc scores suggested that

there was little data support for these alternative forms

relative to an R matrix that used two parameters: an

equal element on the diagonal and an equal element in

the off-diagonals (i.e., the observation errors are identi-

cally distributed, but not independent; see Supporting

Information for more details).

Environmental covariates

After fitting models without covariates to identify a range

of the more supported number of latent variables, we

added environmental covariates to determine whether any

of the underlying patterns and latent variables in the time

series data could be better represented by including envi-

ronmental drivers. Because anadromous Chinook salmon

habitat spans a large range, from inland Columbia River

tributary streams far from the coast to ocean habitats, we

chose large-scale covariates covering both freshwater and

marine domains (Table S2). Our initial list of covariates

was inspired by recent studies of potential environmental

drivers of Pacific salmon population dynamics in multiple

environments and was limited to indices with equivalent

length to our longest salmon abundance time series.

These included measures of snow water equivalent (SWE,

or snowpack) on 1 April (a measure of accumulated win-

ter mountain snowpack; Copeland and Meyer 2011), the

Pacific Decadal Oscillation (PDO; Zabel et al. 2006;

ICTRT and Zabel 2007; Rupp et al. 2012), El Ni~no (Hare

et al. 1999), and Pacific Ocean coastal upwelling (Ryding

and Skalski 1999; Botsford and Lawrence 2002; Logerwell

et al. 2003; Scheuerell and Williams 2005). Accumulated

winter snowpack measured in the spring can indicate low

flow conditions in freshwater during summer that may

stress fish, and PDO, El Ni~no, and coastal upwelling are

generally more suggestive of conditions experienced by

fish in the ocean.

We reduced the list of environmental covariates because

several indices were highly correlated. To avoid multi-

collinearity, we used seasonal means (spring [April–June],
summer [July–September], fall [October–December], win-
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ter [January–March]) for the PDO and coastal upwelling

because adjacent monthly indices were relatively highly

correlated (e.g., April with May, May with June). Because

regional snowpack measures were highly correlated with

each other, we created a comprehensive snowpack index

which consisted of the mean of 9 snowpack measurement

sites at three locations each from Washington, Oregon,

and Idaho that are within or near each ESU (Table S2).

Although there is some connection between El Ni~no,

PDO, and freshwater conditions such as snowpack (e.g.,

McCabe and Dettinger 2002), we found weak correlations

between the seasonal means, for example, of the PDO and

snowpack (e.g., the strongest was with spring PDO,

r = �0.43, with considerable variability).

We considered year lags as well as some additional

derived ocean indices in our list of environmental covari-

ates. Because the fish data consisted of spawner abun-

dances of mixed-age fish, we considered lags in ocean

indices to correspond to ocean occupancy. Ocean entry

for interior Columbia River spring/summer Chinook

salmon populations typically occurs at a common age,

but the number of years spent in the ocean varies. Thus,

4-year-old spawners in 1999 would have begun their life

cycle in freshwater in 1995 and entered the ocean in

1997; therefore, the 1997 ocean index value was shifted to

match the 1999 spawner abundance data. Although

spawners are usually composed of a majority of 4-year-

old fish, there are older and younger fish on the spawning

grounds. To account for variability in spawner age, we

considered additional lags of winter PDO covariates

(Table S2). For the PDO, we included the spring and fall

seasonal means for their ocean entry year and also

included winter PDO values lagged to correspond to the

first winter at sea. We also considered lags in snowpack.

In addition, we included multiyear means of the May–
July PDO, beginning from the year prior to spawning and

extending backward in time for a total of 4 and 5 years

as these were found to be a predictor of coastal coho

salmon recruits (Rupp et al. 2012).

Before inclusion in the DFA model, we added a constant

when needed to the environmental covariates to remove

negative values and zeros, log-transformed, and then stan-

dardized them (zero mean and unit variance) to remain

consistent with the salmon abundance data transforma-

tions. We compared models fitted with transformed and

untransformed covariates, and there was generally more

data support for models with transformed covariates.

The DFA framework is flexible, and it allows each

population to be affected by unique covariates, or by a

common covariate whose impact differs by population.

Because many of the environmental drivers in this analy-

sis have an impact over a large spatial scale (e.g., PDO),

we assumed that the covariates could impact each popula-

tion, but the effect of each covariate on each population

could vary. Therefore, each model contained additional n

parameters for every covariate in the model. As an alter-

native parameterization, we evaluated a D matrix with

shared effects of the covariates, which estimated one

parameter that applied to all populations for each covari-

ate added (i.e., each population is affected similarly).

Mapping populations onto the common
latent variables

Like principal components analysis, a challenge in appli-

cations of DFA is how loadings should be interpreted, in

understanding both the estimated latent variables and

how populations may be grouped based on their individ-

ual factor loadings with the estimated latent variables.

Because the data were standardized prior to the analysis,

the estimated latent variable values may be positive or

negative. It is possible that a time series may be associated

with a latent variable in a negative fashion (Zuur et al.

2003); thus, while for example the estimated latent vari-

able may be moving upward, the data series may be

trending downward. Zuur et al. (2003) demonstrated one

approach to interpret potential grouping patterns of

factor loadings, which consists of looking for grouping

patterns according to the values of factor loadings for

each latent variable. We include an additional method for

latent variable associations. For each population i and

latent variable j, we calculated the correlation between the

vector of observed data after controlling for the environ-

mental covariate effects (i.e., the ith row of y – Dd) and

each of the latent variables (i.e., the ith row and jth col-

umn of Z times the ith row of x). The highest positive

correlations among the latent variables determined the

latent variable associations for each population.

Results

Initial analyses to identify the range of latent variables

within which we should target further analyses suggested

more data support for models with 4 to 7 common latent

variables among the 24 populations of Chinook salmon

time series (Fig. 2). We focused on subsequent model fit-

ting by including each of the environmental covariates

individually to DFA models with 4 to 7 latent variables.

The ranked order of these models, according to their

AICc scores, determined the order in which covariates

were added (Table S3). In the next step, covariates were

added to models with 4 to 7 latent variables according to

their rank in a forward stepwise procedure because com-

putational constraints prevented an exhaustive model

search. The model with the most support from the data

was a 5-latent variable model that included spring and
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summer PDO (the means of April–June and July–Septem-

ber values) lagged 3 years (Table 1; Fig. 3). The 3-year

lag corresponds to the spring and summer juvenile

freshwater rearing period for 4-year-old spawners and for

5-year-old spawners to the period of juvenile out-migra-

tion to the ocean and the early marine period during the

first summer at sea.

The combination of the loadings and latent variables

plus the effect of any exogenous drivers provides the

overall model fits for each population (Figs. 3 and 4).

These model fits allow us to classify the entire 50-year

time series into three general periods of population

growth (Fig. 4). The first 20 years were marked by similar

decreases in abundance among all populations. The next

20 years were much more variable and included a

combination of further declines and relative stability. The

last 10 years generally saw stable or increasing trends in

abundance.

There was concordance of population groupings at the

broad ESU-level spatial scale with the existing delin-

eations, but at the MPG level (which is a finer spatial

scale), we found some differences. At the broader ESU

level, populations in the Upper Columbia and the Snake

River ESUs grouped separately from each other which is

consistent with the current population structure at this

spatial scale (ICTRT 2003). Upper Columbia ESU popula-

tions (Methow, Entiat, and Wenatchee rivers) had the

most association only with latent variable 5 (Fig. 4), and

Snake River ESU populations were associated with latent

variables 1–4. Within the Snake River ESU, at the finer

MPG level, there were several populations that were more

associated with an MPG different from their putative

MPG groupings. Specifically, factor loadings (Fig. 4) per

latent variable exhibited a few clear patterns: Most

Grande Ronde/Imnaha MPG populations were closely

aligned with latent variable 1; however, a few populations

had some association with latent variable 3; the three

South Fork Salmon River MPG populations were more

associated with latent variables 2 and 3; and the remain-

der of the Salmon River MPG populations (Upper, Mid-

dle Fork, and South Fork Salmon River MPGs) were

generally associated with latent variables 2 and 3.

The population grouping method using the correla-

tions between time series data, minus the covariate

effects, and the latent variables had the same pattern as

just looking at factor loadings at the broad ESU scale

grouping pattern between the Upper Columbia and Snake

River populations, and similar but different latent vari-

able association patterns at the within-ESU finer spatial

scale (Fig. 5). At the finer scale, some populations within

an MPG were associated with one latent variable, and

others appeared to be nearly equivalently associated with

Latent variables (or trends, M)

Δ 
A

IC
c

1 2 3 4 5 6 7 8 9 10 11 12

0

50

100

150

Figure 2. Delta (D) AICc values as a function of the number of latent

variables (or trends) from models fitted without environmental

covariates. The D AICc values are relative to the AICc score of the

model with 7 latent variables or trends.

Table 1. The top 15 DFA models with the most support from the

data. The “M” values are the number of latent variables, and “K”

represents the number of parameters estimated. Environmental covari-

ates consisted of seasonal Pacific Decadal Oscillation (“pdo”), an index

of mountain snowpack on 1 April (“snotelall”), seasonal coastal ocean

upwelling (“up”), and El Ni~no 3.4 index, with lags between 0 and

3 years (e.g., L3). Environmental covariates tagged with an asterisk,

“*,” indicate model parameterizations where the terms in the D

matrix were set to estimate one coefficient across all populations

when that covariate was added to the model. See Table S2 for

sources, derivation, and further explanation of the environmental

covariates, and see Table S3 for covariate inclusion order. Akaike

weights were calculated on AICc.

M K Environmental covariates D AICc Akaike weight

5 137 pdoJASL3, pdoAMJL3* 0 0.427

5 136 pdoJASL3 1.4 0.207

4 117 pdoJASL3, pdoAMJL3* 2.6 0.116

4 116 pdoJASL3 3.4 0.077

7 150 pdoJASL2* 5.7 0.025

6 156 pdoJASL3, pdoAMJL3* 5.9 0.022

7 150 pdoAMJL2* 6.5 0.017

7 150 upAMJL2* 7.0 0.013

7 150 elninoL2* 7.2 0.012

7 150 pdoAMJL3* 7.2 0.011

7 150 pdoJFML4* 7.5 0.01

7 150 pdoONDL2* 8.1 0.007

7 149 None 8.7 0.005

7 150 pdoJASL3* 9.2 0.004

7 150 snotelallL2* 9.6 0.004
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fits.
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two latent variables, and in one case, one population

appeared to be the only one associated with one latent

variable. Four of the six Grande Ronde and Imnaha

MPG populations were more clearly associated with

latent variable 1, while the other two were linked to

latent variable 2. A majority of populations in the Sal-

mon River MPGs (Upper Salmon River MPG, Middle

Fork Salmon River MPG, South Fork Salmon River

MPG) were associated with latent variable 2, but a few

populations were closely aligned with either latent vari-

able 1 or 2. And one population in the Upper Salmon

River MPG, the Lemhi River, was more closely associated

with latent variable 1 – characteristic of the Grande

Ronde/Imnaha MPG populations and which is >500 km

away (Figs. 5 and 6; Table S5). The Upper Salmon River

MPG populations appeared to be closely related to either

latent variable 1 or 2. Among the Grande Ronde/Imnaha

MPG populations, both the Wenaha and Minam rivers’

populations were closely associated with both latent vari-

ables 1 and 2. These populations are at least 250 km dis-

tant from the nearest populations in the Salmon River

Basin (Table S4) which also had many populations asso-

ciated with both latent variables 1 and 2. In contrast to

the grouping by factor loadings (Fig. 4), where several

populations had strong associations with latent variable

3, in the correlations method the Secesh River (South
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Fork Salmon River MPG) population grouped separately

from all other populations considered in this study and

was the only population with the strongest association to

latent variable 3 (Fig. 5).

Discussion

Our analysis of Chinook salmon populations from the

Columbia River revealed population dynamics patterns

across the landscape that were both expected and

unexpected. At the broad geographic scale, populations

exhibited distinct temporal patterns of abundance. For

example, Upper Columbia Evolutionarily Significant Unit

(ESU, the unit of conservation under the Endangered

Species Act) populations were never grouped with Snake

River ESU populations (between 500 and 1000 km apart).

However, when we examined population dynamics at the

scale of the major population group (MPG, groupings of

related populations within ESUs), the patterns were more

complex, as described below. This type of information is

critical for understanding population dynamics and can

provide important information for managing these at-risk

populations.

At the broader geographic scale, drivers of population

dynamics were distinct and strong enough to produce

distinguishable population responses when comparing
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Figure 5. Correlations between the data,

corrected for covariate effects, and latent

variables.
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across ESUs. Factors that might explain these differences

include differences in ocean survival (e.g., Sharma et al.

2013), separate migratory corridors, and differences in cli-

mate and geology.

We found that the grouping patterns were more complex

at a finer spatial scale where distances between populations

are shorter. For populations within the Snake River ESU,

several pairs of populations were found to group together

despite the relatively large distances separating them: for

example, Lemhi River with the Grande Ronde populations.

This suggests that some other factors may have been

responsible for linking these populations, such as a common

response to an exogenous driver(s) not captured in our

analyses. Both sets of populations traverse the same set of

main stem dams going to and returning from the ocean.

Generally, the Lemhi basin is drier, has cooler surface air

temperatures (particularly in winter), and is higher in eleva-

tion than the Grande Ronde and Imnaha basins (basin attri-

butes are summarized in ICTRT 2003). All of the Grande

Ronde populations have been supplemented to some degree

by hatchery fish, and during the time span of our analysis,

some hatchery fish have been permitted to spawn naturally,

whereas the Lemhi population has not been supplemented

(Ford 2011). Offspring from hatchery-origin fish spawning

in the wild have demographic impacts on subsequent years

of the natural population although the extent of the impact

appears to be mixed (Christie et al. 2014; Scheuerell et al.

2015). Further research is needed to reveal the underlying

causes for similarities in latent variable associations in rela-

tively distant populations within this ESU, whether from

hatchery contributions or from other factors.

While a few relatively distant populations grouped

together, there were cases where relatively geographically

close populations grouped separately from one another.

For example, the Secesh River population was more associ-

ated with a different latent variable than the other two pop-

ulations in the South Fork Salmon River MPG, a latent

variable to which none of the other study populations was

Lat. var. 1

Lat. var. 1 or 2

Lat. var. 2

Lat. var. 3

   MPGs

GR-IM

SF Salmon

MF Salmon

Upper Salmon

0 100 km

Figure 6. Spatial representation of Snake River Spring Summer Chinook salmon ESU populations grouped according to the results of the latent

variable associations from the correlations between the data, minus the covariate effects, and the top model’s fits (from Fig. 5). The hatched lines

indicate the population groupings into MPG assignments according to the currently identified boundaries (ICTRT 2003), and colors represent

population groupings according to correlations with the latent variables (from Fig. 5).
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closely linked. This could be indicative of demographic iso-

lation or independence. There could be several mechanisms

responsible for this lone latent variable association, one of

which could be alternative juvenile life history rearing strate-

gies. Each year some proportion of juveniles leave their natal

streams early and rear in downstream habitats in response to

habitat and environmental conditions and perhaps other

factors, and the Secesh River population is among those with

a high proportion of downstream-rearing juveniles (Cope-

land et al. 2014). These types of divergent latent variable

association patterns may represent important components

toMPG, ESU, and species diversity which may have implica-

tions for setting conservation priorities: specifically, priori-

tizing which populations to target for recovery efforts (A.

Fullerton, S. Anzalone, D. Van Doornik, T. Copeland, P.

Moran, and R. Zabel, In Review.).

In some instances, populations appeared somewhat

equally grouped with multiple latent variables, depending

on the grouping method, a few of which were more associ-

ated with populations outside of their MPG. The grouping

patterns were less complex in the correlations method,

where a majority of the Snake River ESU populations were

associated with either latent variable 1 or 2, or in a few

cases, both. Five of the Snake River ESU populations

(Minam River, Wenaha River, Camas Creek river, and

Lower and Upper Salmon rivers) had nearly equal associa-

tions with both latent variables. Snake River ESU popula-

tion groupings by factor loadings were more complex. For

example, although all Grande Ronde/Imnaha MPG popula-

tions had strong associations with the first latent variable, a

few of the populations in this MPG also had strong associa-

tions with another latent variable. External influences such

as hatchery strays could potentially confound unique latent

variable association, and although hatchery strays have been

documented in this MPG, they have likely contributed very

little to the abundance dynamics of these populations over

time (Van Doornik et al. 2013). Because of these pattern

differences between grouping methods, it is probably pru-

dent to implement several grouping methods and to con-

sider other population data when interpreting results.

Each grouping method suggested some evidence for

alternative population associations compared to the delin-

eations currently recognized, and population assignment

to MPGs has important conservation implications. For

example, in the interior Columbia Basin assessment of

the viability of Chinook salmon is carried out hierarchi-

cally, starting first with ratings of viability of each popula-

tion-level unit. A viability metric for an MPG is

determined from its constituent populations’ viability rat-

ings (McElhany et al. 2000; ICTRT 2007). Thus, knowing

the MPG to which a population should be assigned has

ramifications for an MPG’s measure of viability and con-

sequently in the hierarchy to the ESU level.

For salmon, expression of multiple life history charac-

teristics, dispersal (gene flow), phenotypic plasticity, and

capacity for rapid evolution are thought to be important

contributors to species stability and resiliency (Waples

et al. 2009). Aspects of these attributes are often included

as important characteristics for persistence of many spe-

cies (e.g., Maron et al. 2004; Yeaman and Jarvis 2006;

Kerr and Secor 2012). Results from a DFA analysis per-

formed on abundance data paired with a similar analysis

on genetic data such as allele frequencies over time from

the same set of populations might prove to be useful met-

rics to quantify species diversity and to infer metapopula-

tion structure.

Inclusion of environmental covariates in the DFA

modeling was strongly supported by the data. All of the

top 12 models (0 to 8.1 D AICc units; Table 1) included

at least one covariate. The highest-ranked model included

spring and summer PDO (means of April–June and July–
September) lagged 3 years. The PDO is a long-frequency

large basin-scale environmental driver. It has been associ-

ated with the marine environment affecting salmon

(Mantua et al. 1997) and to some extent with freshwater

conditions such as snowpack (Clark et al. 2001; McCabe

and Dettinger 2002) and, therefore, to late summer runoff

which impacts summer flows for snowmelt-dominated

river systems. We found a correlation between our index

measure of snowpack and the PDO. Associations with

both the freshwater and marine environments may

explain why the PDO appeared in the best-supported

model. The typical life history of these populations con-

sists of a majority of 4- and 5-year-old spawners that

spend nearly 2 years in freshwater before migrating sea-

ward. Therefore, summer PDO lagged 3 years would cor-

respond to 4-year-old spawners’ first rearing summer in

freshwater, a season when streamflows are typically at

their lowest and when streamflow is sensitive to the

amount of warm-season melting of mountain snowpack

from the previous winter season. For 5-year-old spawners,

a 3-year PDO lag would coincide with conditions during

their first summer at sea. Both of these life stages

(freshwater summer rearing and the early ocean period)

are often cited as important population drivers (e.g., Cro-

zier et al. 2008). Some evidence suggests that there are

several other modes of climate variability more related to

Pacific Northwest mountain snowpack levels than the

PDO and that are not necessarily associated with each

other or with the PDO (Stoelinga et al. 2010). Further

exploration of additional environmental drivers may lead

to additional insides into abundance covariation and pop-

ulation associations.

A number of different approaches have been proposed

to help ecologists and wildlife managers identify and

quantify the population association and connectedness.
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Many of these approaches, such as genetic analyses

(Pritchard et al. 2000) or tagging data (Robichaud and

Rose 2004), may be cost-prohibitive to collect for organ-

isms that exist on a large spatial or temporal scale,

particularly if spatial or temporal variation is important

in explaining population dynamics. In our analysis, we

demonstrate how DFA may be a useful tool in character-

izing covariance in population abundance, species

diversity, and can provide some information about

metapopulation structure from time series of population

counts. DFA has been used to identify how different spe-

cies correlate with environmental drivers (Zuur et al.

2003; Stachura et al. 2014) and to confer some informa-

tion about species diversity and metapopulation structure

(Ohlberger et al. in press). There are several advantages

of using the DFA framework over other time series meth-

ods (e.g., Ward et al. 2010). First, the number of time

series may be prohibitively large to do exhaustive model

selection, and second, the relationships between some

populations within a metapopulation structure may not

be black and white, but instead may exist in a gray area.

Although we apply DFA to population counts, the general

framework is applicable to virtually any type of temporal

data for any species – similar analyses could be performed

on phenotypic measurements from individuals (e.g., body

size), reproductive success, or abiotic environmental vari-

ables (e.g., water temperature, contaminant data).
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